Search results for " collisions"

showing 10 items of 516 documents

Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at √sNN = 2.76 TeV

2017

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of √ s N N = 2.76     TeV . The measurements have been performed in the centrality range 0%–50% and for pion pair transverse momenta 0.2 < k T < 0.7     GeV / c . We find that the R side and R out radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via R side oscillations, is found to b…

Nuclear TheoryPb-Pb collisionspionshiukkasfysiikkaPhysics and Astronomy(all)Nuclear Experiment
researchProduct

Structure of longitudinal chromomagnetic fields in high energy collisions

2014

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial like structure over distance scales of oder the saturation scale. At later times universal scaling emerges at large distances for all ensembles with a nontrivial critical exponent. Finally we compare the resulats for the Wilson loop to the two-point correlator of magnetic fields. (C) 2014 The Authors. Published by Elsevier BV This is an open access article under the CC BY licenseNuclear and High Energy PhysicsWilson loopLARGE NUCLEINuclear TheoryField (physics)FOS: Physical sciences114 Physical sciences01 natural sciencesColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesSCATTERINGGauge theory010306 general physicsSMALL-XEffective actionPhysicsCORRELATORSta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATERenormalization groupEVOLUTIONJIMWLK EQUATIONHigh Energy Physics - PhenomenologySATURATIONQuantum electrodynamicsCritical exponentPhysics Letters B
researchProduct

Experimental Evidence for an Attractive p-φ Interaction

2021

Physical review letters 127(17), 172301 (2021). doi:10.1103/PhysRevLett.127.172301

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ProtonGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentALICEscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]correlation functionNuclear ExperimentPhysicsstrong interactionVDP::Kjerne- og elementærpartikkelfysikk: 431:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431nuclear matterPHOTOPRODUCTIONParticle Physics - Experimentcorrelation: two-particleQCD SUM-RULES; VECTOR-MESONS; COLLISIONS; PARTICLES; PHOTOPRODUCTIONCOLLISIONSParticle physicsp p: scatteringMesonStrong interactionCorrelation function (quantum field theory)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Physics and Astronomy(all)530114 Physical sciencessymmetry: chiralQCD SUM-RULES; VECTOR-MESONS; COLLISIONS; PARTICLES; PHOTOPRODUCTION;QCD SUM-RULES0103 physical sciencesPARTICLEScorrelation: two-particle ; symmetry: chiral ; p p: scattering ; scattering length ; Phi(1020) ; coupling constant ; correlation function ; strong interaction ; ALICE ; nuclear matter ; effective range ; experimental results ; 13000 GeV-cms/nucleonNuclear Physics - Experimentddc:530phi meson particle physics ALICE010306 general physicstwo-particle [correlation]Coupling constantchiral [symmetry]010308 nuclear & particles physicsScatteringPhi(1020)coupling constantScattering lengthNuclear matter13000 GeV-cms/nucleonscattering lengthStrong Interactioneffective rangeHigh Energy Physics::ExperimentVECTOR-MESONSexperimental results
researchProduct

Performance of jet substructure techniques for large-$R$ jets in proton-proton collisions at $\sqrt{s}$ = 7 TeV using the ATLAS detector

2013

This paper presents the application of a variety of techniques to study jet substructure. The performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop filtering, trimming, and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented.…

Ciencias FísicasPhysics beyond the Standard ModelHadronMonte Carlo method01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Jets[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massNuclear ExperimentHADRONIC JEThadron-hadron scatteringQCPhysicsLarge Hadron ColliderAtlas (topology)Settore FIS/01 - Fisica SperimentaleObservableATLASPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGproton–proton collisionLHCCIENCIAS NATURALES Y EXACTASParticle Physics - ExperimentParticle physicsNuclear and High Energy PhysicsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2530Nuclear physics0103 physical sciencesFysikddc:530High Energy Physics010306 general physicsCiencias ExactasScience & TechnologyHadron-Hadron ScatteringATLAS detector010308 nuclear & particles physicsFísica//purl.org/becyt/ford/1.3 [https]AstronomíaHADRON-HADRON COLLISIONSExperimental High Energy PhysicsSubstructureHigh Energy Physics::Experiment
researchProduct

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

2019

This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02  TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73  nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3  GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…

Photonheavy ion: scatteringmass spectrum: (2photon)Physics::Instrumentation and Detectorsmeasured [channel cross section]General Physics and Astronomytransverse energy [photon]nucl-ex01 natural sciencesLight scatteringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Scattering processPseudorapidities[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massCollisionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentelastic scattering [photon photon]Physicsphoton: transverse energyproton–proton collisionsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollPseudorapidityTransverse momentalight-by-light scatteringLHCchannel cross section: measuredParticle Physics - Experimentrelativistic heavy-ion collisionsjets(2photon) [mass spectrum]Transverse energyCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentddc:500.2LHC ATLAS High Energy Physicstransverse momentumplanarity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ions530AcoplanarityNuclear physicsscattering [heavy ion]Delbrück scattering0103 physical sciencesStandard deviationNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSelection criteria010306 general physicsperipheralCiencias Exactastwo-photon [mass spectrum]Integrated luminosityleadScience & Technologyhep-exrapidity [photon]Scatteringbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaphoton: rapidityElementary Particles and FieldsHigh Energy Physics::Experimentphoton photon: elastic scatteringmass spectrum: two-photonexperimental results
researchProduct

Custodial vector model

2014

We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a $SU(2)_L\times SU(2)_R$ spectral global symmetry. This symmetry partially protects the electroweak S-parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum and interactions with the standard model fields lead to distinct signatures at the LHC in the diboson, dilepton and associated Higgs channels.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114electroweak sector010308 nuclear & particles physicsAtlas detectorElectroweak interactionHigh Energy Physics::PhenomenologyPP collisionsFOS: Physical scienceshep-phGlobal symmetry01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Low energy0103 physical sciencesModel spectrumHiggs bosonHigh Energy Physics::Experiment010306 general physicsPhenomenology (particle physics)
researchProduct

Measurement of jet suppression in central Pb–Pb collisions at √sNN = 2.76 TeV

2015

The transverse momentum (pT) spectrum and nuclear modification factor (RAA) of reconstructed jets in 0–10% and 10–30% central Pb–Pb collisions at √sNN = 2.76 TeV were measured. Jets were reconstructed using the anti-kT jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet pT spectra are reported in the pseudorapidity interval of |ηjet| 5 GeV/c to suppress jets constructed from the combinatorial background in Pb–Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb– Pb collisions had a negligible effect on the RAA. The nuclear m…

Pb–Pb collisionsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::Experimentjet suppressionjet spectraNuclear Experiment
researchProduct

Λc+ production in Pb–Pb collisions at √sNN = 5.02 TeV

2019

A measurement of the production of prompt Λc+ baryons in Pb–Pb collisions at √sNN = 5.02 TeV with the ALICE detector at the LHC is reported. The Λc+ and Λ‾c− were reconstructed at midrapidity (|y|<0.5) via the hadronic decay channel Λc+ → pKS0 (and charge conjugate) in the transverse momentum and centrality intervals 6<pT <12 GeV/c and 0–80%. The Λc+/D0 ratio, which is sensitive to the charm quark hadronisation mechanisms in the medium, is measured and found to be larger than the ratio measured in minimum-bias pp collisions at √s = 7 TeV and in p–Pb collisions at √sNN = 5.02 TeV. In particular, the values in p–Pb and Pb–Pb collisions differ by about two standard deviations of the combined s…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsNuclear TheoryHigh Energy Physics::PhenomenologyPb-Pb collisionsHigh Energy Physics::Experimentlambda baryonshiukkasfysiikkaNuclear Experiment
researchProduct

Hot spots and gluon field fluctuations as causes of eccentricity in small systems

2021

We calculate eccentricities in high energy proton-nucleus collisions, by calculating correlation functions of the energy density field of the Glasma immediately after the collision event at proper time tau = 0. We separately consider the effects of color charge and geometrical hot spot fluctuations, analytically performing the averages over both in a dilute-dense limit. We show that geometric fluctuations of hot spots inside the proton are the dominant source of eccentricity whereas color charge fluctuations only give a negligible correction. The size and number of hot spots are the most important parameters characterizing the eccentricities.

Nuclear TheoryField (physics)ProtonAZIMUTHAL ANISOTROPIESFLOWmedia_common.quotation_subjectFOS: Physical sciencesHot spot (veterinary medicine)hiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesProper timeEccentricity (behavior)LONG-RANGEHARMONICSNuclear Experiment010306 general physicsPLUS PB COLLISIONSGluon fieldmedia_commonPROTON-LEAD COLLISIONSPhysics010308 nuclear & particles physicskvarkki-gluoniplasmaANGULAR-CORRELATIONSComputational physicsHigh Energy Physics - PhenomenologyNEAR-SIDEAstrophysics::Earth and Planetary AstrophysicsHIGH TRANSVERSE-MOMENTUMPPBEvent (particle physics)Color chargePhysical Review D
researchProduct